Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.

Identifieur interne : 000567 ( Main/Exploration ); précédent : 000566; suivant : 000568

Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.

Auteurs : Gregory A. Deiulio [États-Unis] ; Li Guo [États-Unis] ; Yong Zhang [États-Unis] ; Jonathan M. Goldberg [États-Unis] ; H Corby Kistler [États-Unis] ; Li-Jun Ma [États-Unis]

Source :

RBID : pubmed:29898984

Descripteurs français

English descriptors

Abstract

The Fusarium oxysporum species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12 F. oxysporum isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall, F. oxysporum kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the F. oxysporum kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual F. oxysporum isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCE Isolates of Fusarium oxysporum are adapted to survive a wide range of host and nonhost conditions. In addition, F. oxysporum was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12 F. oxysporum isolates and highlighted kinase families that distinguish F. oxysporum from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets Fusarium apart from other Ascomycetes Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.

DOI: 10.1128/mSphere.00231-18
PubMed: 29898984
PubMed Central: PMC6001611


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.</title>
<author>
<name sortKey="Deiulio, Gregory A" sort="Deiulio, Gregory A" uniqKey="Deiulio G" first="Gregory A" last="Deiulio">Gregory A. Deiulio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li" sort="Guo, Li" uniqKey="Guo L" first="Li" last="Guo">Li Guo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goldberg, Jonathan M" sort="Goldberg, Jonathan M" uniqKey="Goldberg J" first="Jonathan M" last="Goldberg">Jonathan M. Goldberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Broad Institute of MIT and Harvard, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kistler, H Corby" sort="Kistler, H Corby" uniqKey="Kistler H" first="H Corby" last="Kistler">H Corby Kistler</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA ARS, Cereal Disease Laboratory, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA ARS, Cereal Disease Laboratory, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Li Jun" sort="Ma, Li Jun" uniqKey="Ma L" first="Li-Jun" last="Ma">Li-Jun Ma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA lijun@biochem.umass.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29898984</idno>
<idno type="pmid">29898984</idno>
<idno type="doi">10.1128/mSphere.00231-18</idno>
<idno type="pmc">PMC6001611</idno>
<idno type="wicri:Area/Main/Corpus">000531</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000531</idno>
<idno type="wicri:Area/Main/Curation">000531</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000531</idno>
<idno type="wicri:Area/Main/Exploration">000531</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.</title>
<author>
<name sortKey="Deiulio, Gregory A" sort="Deiulio, Gregory A" uniqKey="Deiulio G" first="Gregory A" last="Deiulio">Gregory A. Deiulio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Li" sort="Guo, Li" uniqKey="Guo L" first="Li" last="Guo">Li Guo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goldberg, Jonathan M" sort="Goldberg, Jonathan M" uniqKey="Goldberg J" first="Jonathan M" last="Goldberg">Jonathan M. Goldberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Broad Institute of MIT and Harvard, Cambridge, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kistler, H Corby" sort="Kistler, H Corby" uniqKey="Kistler H" first="H Corby" last="Kistler">H Corby Kistler</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA ARS, Cereal Disease Laboratory, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA ARS, Cereal Disease Laboratory, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Li Jun" sort="Ma, Li Jun" uniqKey="Ma L" first="Li-Jun" last="Ma">Li-Jun Ma</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA lijun@biochem.umass.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Amherst (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université du Massachusetts à Amherst</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Chromosomes, Fungal (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fusariosis (microbiology)</term>
<term>Fusarium (enzymology)</term>
<term>Fusarium (genetics)</term>
<term>Host Specificity (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plants (MeSH)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Chromosomes de champignon (MeSH)</term>
<term>Fusariose (microbiologie)</term>
<term>Fusarium (enzymologie)</term>
<term>Fusarium (génétique)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plantes (MeSH)</term>
<term>Protein kinases (génétique)</term>
<term>Spécificité d'hôte (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fusarium</term>
<term>Protein kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Fusariose</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fusariosis</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Chromosomes, Fungal</term>
<term>Evolution, Molecular</term>
<term>Host Specificity</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Plants</term>
<term>Protein Processing, Post-Translational</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Chromosomes de champignon</term>
<term>Humains</term>
<term>Interactions hôte-pathogène</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Phosphorylation</term>
<term>Plantes</term>
<term>Spécificité d'hôte</term>
<term>Transduction du signal</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The
<i>Fusarium oxysporum</i>
species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12
<i>F. oxysporum</i>
isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall,
<i>F. oxysporum</i>
kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the
<i>F. oxysporum</i>
kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual
<i>F. oxysporum</i>
isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.
<b>IMPORTANCE</b>
Isolates of
<i>Fusarium oxysporum</i>
are adapted to survive a wide range of host and nonhost conditions. In addition,
<i>F. oxysporum</i>
was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12
<i>F. oxysporum</i>
isolates and highlighted kinase families that distinguish
<i>F. oxysporum</i>
from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets
<i>Fusarium</i>
apart from other
<i>Ascomycetes</i>
Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29898984</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00231-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00231-18</ELocationID>
<Abstract>
<AbstractText>The
<i>Fusarium oxysporum</i>
species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12
<i>F. oxysporum</i>
isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall,
<i>F. oxysporum</i>
kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the
<i>F. oxysporum</i>
kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual
<i>F. oxysporum</i>
isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.
<b>IMPORTANCE</b>
Isolates of
<i>Fusarium oxysporum</i>
are adapted to survive a wide range of host and nonhost conditions. In addition,
<i>F. oxysporum</i>
was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12
<i>F. oxysporum</i>
isolates and highlighted kinase families that distinguish
<i>F. oxysporum</i>
from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets
<i>Fusarium</i>
apart from other
<i>Ascomycetes</i>
Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.</AbstractText>
<CopyrightInformation>Copyright © 2018 DeIulio et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>DeIulio</LastName>
<ForeName>Gregory A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goldberg</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kistler</LastName>
<ForeName>H Corby</ForeName>
<Initials>HC</Initials>
<Identifier Source="ORCID">0000-0001-5312-6297</Identifier>
<AffiliationInfo>
<Affiliation>USDA ARS, Cereal Disease Laboratory, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Li-Jun</ForeName>
<Initials>LJ</Initials>
<Identifier Source="ORCID">0000-0002-2733-3708</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA lijun@biochem.umass.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015825" MajorTopicYN="Y">Chromosomes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060585" MajorTopicYN="N">Fusariosis</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fusarium oxysporum species complex</Keyword>
<Keyword MajorTopicYN="Y">TOR kinase</Keyword>
<Keyword MajorTopicYN="Y">accessory chromosome</Keyword>
<Keyword MajorTopicYN="Y">histidine kinase</Keyword>
<Keyword MajorTopicYN="Y">kinome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29898984</ArticleId>
<ArticleId IdType="pii">3/3/e00231-18</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00231-18</ArticleId>
<ArticleId IdType="pmc">PMC6001611</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 Dec 6;298(5600):1912-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Jul;15(13):2230-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 May;19(5):3328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10207057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Apr 20;43(7):e47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25605792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(6):122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25180339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2006 Sep 12;2006(352):re9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jul;19(7):2708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1995 Apr;6(4):371-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7626804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Apr;22(4):791-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22282571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2010 Feb 16;3(109):ra12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Sep 23;11:510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20863387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 30;89(5):727-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9182760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Jun;63(2):479-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3502-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2013;67:399-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2459-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 01;10(7):e0130748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26131711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Oct 1;29(19):2387-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2015 Apr 17;11(4):800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):491-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Sep 04;2001(98):re1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2010 May;306(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 30;9(12):e115890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Mar;2(3):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16596165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 May 1;41(10):e108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22216007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2010 Aug;13(4):424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Mar 9;374(6518):131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7877684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Dec;2(6):1151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14665450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1729698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22364741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2011 Apr;51(2):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21077122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Aug 08;12:402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21824423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Mar 1;432(1):80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23376070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Feb 24;11:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Aug;41(4):889-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Dec;70(4):910-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Mar 2;17(5):1385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Sep 20;1565(1):36-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2014 Dec;42(4):422-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25606019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2000 Sep;113 ( Pt 18):3141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Mar;95(6):914-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2012 Apr;2(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22540037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Aug 02;15:640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 16;19(20):5288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11032796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Dec;17(9):1455-1466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Mar 21;275(5307):1781-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Feb 22;14:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23432788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:267-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25090477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23516554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Nov;18(11):4087-4102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27387256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Oct;27(10):514-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Feb 27;11(2):e1004632</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007 Sep 04;8:309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17784954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1996 Mar;29(4):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8598053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Apr 24;422(6934):859-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12712197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1999 Jan;79(1):143-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9922370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Oct;5(10):1807-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Apr;24(4):1327-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e58008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Mar 22;64(6):1111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1706223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Minnesota</li>
</region>
<settlement>
<li>Amherst (Massachusetts)</li>
</settlement>
<orgName>
<li>Université du Massachusetts à Amherst</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Deiulio, Gregory A" sort="Deiulio, Gregory A" uniqKey="Deiulio G" first="Gregory A" last="Deiulio">Gregory A. Deiulio</name>
</region>
<name sortKey="Goldberg, Jonathan M" sort="Goldberg, Jonathan M" uniqKey="Goldberg J" first="Jonathan M" last="Goldberg">Jonathan M. Goldberg</name>
<name sortKey="Guo, Li" sort="Guo, Li" uniqKey="Guo L" first="Li" last="Guo">Li Guo</name>
<name sortKey="Kistler, H Corby" sort="Kistler, H Corby" uniqKey="Kistler H" first="H Corby" last="Kistler">H Corby Kistler</name>
<name sortKey="Ma, Li Jun" sort="Ma, Li Jun" uniqKey="Ma L" first="Li-Jun" last="Ma">Li-Jun Ma</name>
<name sortKey="Zhang, Yong" sort="Zhang, Yong" uniqKey="Zhang Y" first="Yong" last="Zhang">Yong Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29898984
   |texte=   Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29898984" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020